

CDR DEVELOPMENT PROJECT

Creating A Microwave-Based Upper-Tropospheric Humidity (UTH) FCDR

Johnny Luo¹ (PI), W. B. Rossow¹ (co-PI), D. Kley^{2,3} (co-I), and Jeyavinoth Jeyaratnam¹

¹City College of New York, CUNY ²Colorado State University ³Research Centre Juelich GmbH, Germany

Correspondence: Johnny Luo, luo@sci.ccny.cuny.edu

Outline

- Project Description
- Production and QA Approach
- Applications
- Schedule & Issues

Project Description

Goal: "...bring together all the upper-tropospheric humidity (*UTH*)-related radiance data from multiple satellites and process them to establish a long-term, global, inter-calibrated radiance record from which UTH can be retrieved and UTH research can be conducted."

Why UTH?

Despite the small amount, UTH contributes significantly to the greenhouse effect of H₂O

Project Description

 Goal: "...bring together all the *UTH-related radiance* data from multiple satellites and process them to establish a long-term, global, inter-calibrated radiance record from which UTH can be retrieved and UTH research can be conducted."

Source Data for long-term UTH measurements

1. HIRS ch12 (6.7 μm) ← Already an operational FCDR (Shi et al. 2011)

- 2. Geostationary UTH channel (6.3-6.5 μ m)
- 3. SSM/T2, AMSU-B, ... (~183 GHz) Focus of this project
- 4. MOZAIC (Measurement of ozone and water vapour by Airbus inservice aircraft)

One of the calibration bases

Project Description

CDR(s) (Validated Outputs)	Period of Record	Spatial Resolution; Projection information	Time Step	Data format	Inputs	Uncertainty Estimates (in percent or error)	Collateral Products (unofficial and/or unvalidated)
SSM/T2 UTH	1992 - 2008	~ 48 km at nadir		netCDF	Raw binary files from NOAA		Collocated ISCCP cloud info
AMSU-B UTH	2000 - present	~ 16 km at nadir		netCDF	The same as above		The same as above

Production Approach

(Use SSM/T2 as an example; we are working on AMSU-B)

Uncalibrated, raw SSM/T2 data (Two versions: one from NESDIS and the other from NGDC)

Granularize and quality control

Apply various calibration methods

Append ISCCP cloud info

SSM/T2 TB(183±1 GHz), monthly, zonal means

UTH FCDR

Production Approach

(Use SSM/T2 as an example; we are working on AMSU-B)

Various Calibration Methods:

Method 1: simultaneous nadir overpass (SNO)

Method 2: Compare with simulated TBs based on collocated MOZAIC take-off & landing profiles

Method 3: Compare monthly/zonal means for the overlapping periods

Method 4: Use natural targets (e.g., Antarctica and tropical ocean) for intercomparison

Goal: seek consistency among different calibration methods

SSM/T2 TB(183±1 GHz), monthly, zonal means

Production Approach

(Use SSM/T2 as an example; we are working on AMSU-B)

An important ancillary data for UTH is clouds, because certain clouds (e.g. deep convection) can contaminate UTH radiances and need to be marked up.

SSM/T2 TB(183±1 GHz) swath data

An example of deep convection contamination

Quality Assurance Approach

Ways to determine product quality for future data

- 1. Compare TB histogram against long term statistics
- 2. Compare with simulated TBs using collocated MOZAIC profiles

Applications

Because UTH contributes to \sim 1/3 of the H₂O greenhouse effect, it will help better monitor and understand global warming to have a reliable long-term UTH CDR. MW-based UTH measurements have the advantage of being less sensitive to clouds.

Soden et al. (2005), Science.

HIRS Ch12 is an IR UTH channel, which is easily contaminated by high-level clouds. We will supplement it with an MW-based UTH record (which is less affected by clouds).

Schedule & Issues

(<u>Year 1: 2010-2011</u>)

- 1. Explored various methods to calibration SSM/T2;
- 2. Started the effort of re-archiving SSM/T2 data.

(Year 2: 2011-2012)

- 1. Continue the effort to re-archive SSM/T2 (thanks to Hilawe Semunegus of NCDC and Dan Kowal of NGDC)
- 2. Append SSM/T2 with ISCCP cloud info

(Year 3: 2012-2013)

- 1. Compare various calibration results and consolidate them
- 2. Preliminary comparison between SSM/T2 and AMSU-B (1 yr of data)

(No-cost extension: 2013-2014)

- Finish calibration of AMSU-B and SSM/T2
- 2. Bring in IR UTH data from GEOs;
- 3. Package up the UTH CDR and deliver it to NCDC.

